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For a general approximation process we formulate theorems concerning rates of
convergence, including theorems about saturation class, non-optimal rates, and
sharpness of non-optimal convergence. The general results are then applied to
n-times integrated semigroups and cosine functions, yielding some new results
about their approximation, as well as the convergence of their Cesa� ro and Abel
means to the identity. � 1997 Academic Press

1. INTRODUCTION

A family [S\], \ # (0, �), of bounded linear operators S\ on a Banach
space X is called a (uniformly bounded) strong approximation process on X
if there is a constant M such that &S\&�M for all \>0 and

(A1) lim
\ � �

&S\x&x&=0 for all x # X.

Saturation is an interesting phenomenon in the approximation theory.
This concept was introduced by Favard in 1947. The process [S\] is said
to possess the saturation property if there exists a positive function ,( \)
tending monotonically to zero as \ � � such that every x # X for which

&S\x&x&=b (,( \)) ( \ � �)

is an invariant element of [S\], i.e., S\ x=x for all \ # (0, �), and if the
set

F[X; S\]=[x # X; &S\x&x&=O(,( \))( \ � �)]
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contains at least one noninvariant element. In this event, the approxima-
tion process [S\] is said to have optimal approximation order O(,( \)) or
to be saturated with order O(,( \)), and F[X; S\] is called its Favard class
or saturation class. See e.g. [6, p. 434] for the above definitions.

Thus the saturation concept consists of determination of the optimal
order O(,( \)) of approximation and the class of elements which can be
approximated with this optimal order. This problem has been investigated
by many authors. In particular, we mention the following theorem of
Butzer and Nessel [6, Theorem 13.4.1, p. 502], which discusses saturation
under two further assumptions:

(A2) there are a densely defined closed operator B and a positive
number : such that

lim
\ � �

&\:[S\x&x]&Bx&=0

for every x # D(B);

(A3) there is a regularization process, i.e., a family of bounded
operators [Jn], n # N, from X into X such that the range of Jn is contained
in D(B) for each n # N, limn � � &Jnx&x&=0 for each x # X, and operators
Jn and S\ are commutative for all n # N and \>0.

Theorem A. Let X be a Banach space, [S\] be a strong approximation
process on X which satisfies conditions (A1), (A2), and (A3). Then we have:

(i) If x # X is such that &S\x&x&=b ( \&:), then x # D(B) and
Bx=0.

(ii) The following conditions are equivalent:

(a) &S\x&x&=O( \&:)( \ � �);

(b) x # D(B)
tX;

(c) x # D(B), provided X is reflexive.

Here D(B) is the Banach space with the graph norm& }&D(B) of B and D(B)
tX :=

[x # X; _[xn]/D(B) such that limn � � &xn&x&=0 and sup &xn&D(B)<�].

Thus the Favard class is characterized with the completion of D(B)
relative to X. Application of Theorem A to a C0-semigroup T( } ) with
generator A yields the saturation theorem (see [6, Theorem 13.4.4, p. 505]
and [3, Theorem 2.1.2, p. 88, and Prop. 2.3.1, p. 111]) that, as t � 0,
&T(t) x&x&=O(t) (resp., o(t)) if and only if x # D(A)

t X (resp. x # N(A)).
Butzer and Dickmeis [4] proved that if A possesses a sequence [*n] of
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eigenvalues with |*n | � �, then for each 0<;<1 there exists an x* # X
such that

&T(t) x*&x*& {=O(t ;)
{b (t ;)

(t � 0+).

Davydov [9] further proved that the sharpness of non-optimal approxima-
tion holds true for any semigroup having an unbounded generator.

The aim of this paper is to consider the ``non-optimal'' approximation of
[S\]. Using a K-functional we give necessary and sufficient conditions
upon an element x # X such that

&S\x&x&=O(\&;) (0< ;<:, \ � �).

Moreover, it is proved that if B is unbounded, then there exists an x* # X
such that

&S\x*&x*& {=O( \&;)
{b ( \&;)

( \ � �).

The proof is based on a deep fundamental result of Davydov [9].
In Section 2, we prove general results on rates and sharpness of non-

optimal convergence for a general approximation process, and then, in
Sections 3 and 4, we apply them to n-times integrated semigroups and
n-times integrated cosine functions. Note that from the general results in
Section 2 one can also deduce our recent results [8, Theorems 2.3 and 2.4]
on optimal and on-optimal rates of approximation for resolvent families.
The particular results for resolvent families and for n-times integrated semi-
groups and cosine functions all generalize the corresponding results (see
[2�7, 9]) for C0-semigroups and cosine operator functions.

2. STRONG APPROXIMATION WITH RATES

For convenience, we first observe some properties of [S\], [Jn], and B
in Theorem A. Since B is a closed operator, D(B) becomes a Banach space
with the graph norm &x&D(B) :=&x&+&Bx& for x # D(B). [ \:(S\&I )|D(B)]
is a family of bounded linear operators from D(B) into X. Using (A2), for
each x # D(B) there exists a constant Mx>0 such that \: &S\x&x&�Mx

for all \�0. Hence, by the principle of uniform boundedness there exists
M1 such that

\: &S\x&x&�M1 &x&D(B) (x # D(B), \>0). (1)
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Similarly, by (A3) and the principle of uniform boundedness there also
exists M2>0, independent of x and n, such that

&Jnx&�M2 &x& for all x # X. (2)

Now, we consider the non-optimal approximation of [S\]. Under some
additional assumptions we find necessary and sufficient conditions upon an
element x # X such that

&S\x&x&=O(\&;) ( \ � �),

where 0<;<:. Before doing this, we recall the definition of a K-functional.

Definition 2.1. Let X be a Banach space with norm & }&X and Y be a
submanifold with seminorm & }&Y . The K-functional is defined by

K(t, x) :=K(t, x, X, Y, & }&Y)= inf
y # Y

[&x&y&X+t &y&Y].

If Y is also a Banach space with & }&Y , then the completion of Y relative
to X is defined as

Y� X :=[x # X; _[xn]/Y such that lim
n � �

&xn&x&X=0

and sup &xn&Y<�].

It is well known that K(t, x) is a bounded, continuous, monotone
increasing, and subadditive function of t for each x # X (cf. [2] and [3]).
By using a K-functional we can give the following characterization of non-
optimal convergence of [S\x].

Theorem 2.2. Suppose [S\], [Jn], and B, as defined in Theorem A,
satisfy conditions (A1)�(A3), and also satisfy the following condition for
x # X and 0<;�::

(A4) If &S\x&x&=O( \&;)( \ � �), then there are \0>0, C1 and
C2 , depending on x and ;, such that for each \�\0 there exists an n\ for
which &BJn\

x&�C1 \:&; and &Jn\
x&x&�C2 \&;.

Then

&S\x&x&=O( \&;) if and only if

K( \&:, x, X, D(B), & }&D(B))=O( \&;).

203RATES OF APPROXIMATION



File: 640J 308505 . By:CV . Date:16:07:01 . Time:06:05 LOP8M. V8.0. Page 01:01
Codes: 2836 Signs: 1426 . Length: 45 pic 0 pts, 190 mm

Proof. (Sufficiency) Using (1) we have for any y # D(B) and \>0

&S\ x&x&�&(S\&I )(x& y)&+&S\ y&y&

�(M+1) &x& y&+\&:M1 &y&D(B)

�max(M+1, M1)[&x& y&+\&: &y&D(B)].

Hence &S\x&x&�max(M+1, M1) K(\&:, x, X, D(B), & }&D(B))=O( \&;).

(Necessity) If &S\x&x&=O( \&;), then, by (A4) and (2), we have
for any \�\0

K( \&:, x, X, D(B), & }&D(B))�&x&Jn\
x&+\&: &Jn\

x&D(B)

�C2 \&;+\&:M2 &x&+C1 \&: } \:&;

�(C2+M2 &x&+C1) \&;.

Hence K( \&:, x, X, D(B), & }&D(B))=O( \&;) ( \ � �).

Remarks. (i) Under assumptions (A2) and (A3) we have

&BJnx&= lim
\ � �

\: &S\ Jn x&Jnx&= lim
\ � �

\: &Jn[S\x&x]&

�M2 lim
\ � �

\: &S\x&x&.

Thus, if :=;, then (A4) automatically holds. Hence, Theorem A is also a
consequence of Theorem 2.2 and a property of the K-functional (see [2]).

(ii) Since &x& y&+\&: &y&D(B)�(1+\&:)[&x& y&+\&:&Bx&]+
\&:&x& for x # X, y # D(B), Theorem 2.2 still holds if in the definition of the
K-functional the graph norm of D(B) is replaced by the seminorm &Bx& for
x # D(B).

Moreover, we also can give the sharpness of non-optimal approximation
for [S\]. To do this, we need the following lemma.

Lemma 2.3. Suppose [S\], [Jn], and B satisfy (A1)�(A3), and also
satisfy the following assumption:

(A5) If lim\ � � &S\&I&=0, then limn � � &Jn&I&=0.

Then B is bounded if and only if &S\&I& � 0. In this case, &S\&I&=
O( \&:).

Proof. The necessity follows from (A2) and the uniform boundedness
principle. Suppose &S\&I& � 0 as \ � �. Define An, \ : X � X by
An, \ x :=JnS\x. An, \ is a bounded linear operator with range contained
in D(B). By (2) we have

204 CHANG AND SHAW



File: 640J 308506 . By:CV . Date:16:07:01 . Time:06:05 LOP8M. V8.0. Page 01:01
Codes: 3031 Signs: 1864 . Length: 45 pic 0 pts, 190 mm

&An, \x&x&=&JnS\x&x&

�&JnS\x&Jnx&+&Jnx&x&

�M2 &S\x&x&+&Jn&I& &x&

�M2 &S\&I& &x&+&Jn&I& &x&.

Hence, by (A5) there exist n0 and \0 such that &An0 , \0
&I&� 1

2 . This
implies that An0 , \0

is invertible, so that its range is the whole space X.
Hence D(B)=X, and so B must be bounded.

Note that (A4) and (A5) are independent.

Theorem 2.4. Suppose [S\], [Jn], and B saisfy (A2), (A3), and (A5).
Then B is unbounded if and only if for each 0<;<: there exists x;* such
that

&S\x;*&x;*& {=O(\&;)
{b (\&;)

(\ � �).

If ;=: and B is not equal to the null operator, then, by Theorem A,
there always exist such x;*.

To prove this theorem, we need the following theorem which is shown
by Davydov [9].

Theorem 2.5. Let X be a Banach space and X+ be the set of all non-
negative, sublinear, real-valued functions S on X for which the norm
&S&X+ :=sup[S(x); x # X, &x&�1] is bounded. Further, let H be an unbounded
set of continuous seminorms and let [x # X; lim&h&X+ � � h(x)=0, h # H] be
dense in X. Then there exists an element x* # X such that suph # H h(x*)�1
and lim&h&X+ � � h(x*)=1.

Proof of Theorem 2.4. If B is bounded, by (A2) and the uniform
boundedness principle we have &S\&I&=O(\&:) so that &S\&I&=
b (\&;) (\ � �) for all 0<;<:. This shows the sufficiency.

To show the necessity, define H :=[h\ ; h\(x) :=\; &S\x&x&, x # X for
\>0]. Let us check that H satisfies the hypothesis of Theorem 2.5. By the
uniform boundedness of [S\], &h\&X+�(M+1) \; for some M>0 and
this implies that if &h\&X+ � �, then \ � �. By (A2), D(B)/[x # X;
lim&h&X+ � � h(x)=0, h # H] is dense in X. If B is unbounded, by Lemma
2.3 S\ is not convergent in operator norm. Hence lim\ � � &S\&I&>0, so
that lim\ � � &h\&X+=lim\ � � \; &S\&I&=�. Thus H is an unbounded
set which satisfies the hypothesis of Theorem 2.5. Hence there exists
x* # X such that sup\>0 h\(x*)�1 and lim\ � � h\(x*)=1, i.e., x* satisfies
&S\x*&x*&=O(\&;) (\ � �) but &S\x*&x*&{b (\&;) (\ � �).
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3. APPLICATIONS TO N-TIMES INTEGRATED SEMIGROUPS

Let X be a Banach space. We denote by B(X ) the set of all bounded
linear operators. Let n be a natural number. A strongly continuous family
[T(t); t�0] in B(X ) is called a n-times integrated semigroup on X, if
T(0)=0 and

T(t) T(s)x=
1

(n&1)! \|
t+s

t
(s+t&r)n&1 T(r)x dr

&|
s

0
(t+s&r)n&1 T(r) x dr+

for x # X and t, s�0. T( } ) is nondegenerate if T(t)x=0 for all t>0 implies
x=0.

For convenience we call a semigroup of class C0 on X also a 0-time
integrated semigroup on X.

The generator A of a nondegenerate n-times integrated semigroup T( } ) is
defined as follows:

x # D(A) and Ax=y if and only if

T(t)x=|
t

0
T(r) y dr+

tn

n!
x for t�0.

If there are M and | such that &T(t)&�Me|t, then we say that T( } ) is
exponentially bounded. In this case, one has

(|, �)/\(A) and (*&A)&1 x=|
�

0
*ne&*tT(t)x dt

for x # X and *>|. We say A # In if A generates a n-times integrated semi-
group T( } ) satisfying &T(t)&=O(tn) (t � 0+). Note that A may not be
densely defined. For basic properties of n-times integrated semigroups see
[1, 10, 11, 14, 16, 17, and 19].

Definition 3.1. We call a nondegenerate one-time integrated semi-
group T( } ) an F0-semigroup with generator A and write A # F0 if T( } )
satisfies the local Lipschitz continuity:

&T(t)&T(r)&�4{ |t&r| for 0�t, r�{<�,

where 4{ is a finite number for each {<�. Clearly, F0/I1 .
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Definition 3.2. Let A be a linear operator defined on X with domain
D(A). We say A # G(M, |), if *I&A is invertible for *>| and R(*; A)=
(*I&A)&1 is a bounded linear operator satisfying the Hille�Yosida
condition:

&R(*; A)n&�
M

(*&|)n for *>|, n=1, 2, 3, ... .

We start with a result which determines what elements of X can be
approximated by T(t) (t � 0+).

Theorem 3.3. Let A # In generate a n-times integrated semigroup T( } ) .
Then (n!�tn) T(t)x converges to x as t � 0+ if and only if x # D(A).

Proof. Since T(t)x # D(A) for each x # X and t�0, the convergence of
(n!�tn) T(t)x to x implies x # D(A). Conversely, since &T(t)&�Mtn as
t � 0+ for some M>0, it is sufficient to show that (n!�tn) T(t)x converges
to x as t � 0+ for x # D(A). Let x # D(A). Then

"n!
tn T(t)x&x"="n!

tn |
t

0
T(u) Ax du"�

n!
tn |

t

0
&T(u) Ax& du

�
Mn!
n+1

t &Ax&

for sufficiently small t. Hence, we have shown that (n!�tn) T(t)x converges
to x as t � 0+ for x # D(A).

From Theorem 3.3 we can easily show the following corollary.

Corollary 3.4. If A # In , then for x # D(A)

(a)
1
t |

t

0

n! T(u)
un x du � x as t � 0+;

(b)
(n+1)!

tn+1 |
t

0
T(u)x du � x as t � 0+.

If A is the generator of a n-times integrated semigroup, let B be the part
of A in D(A), i.e., Bx :=Ax for x # D(B)=[x # D(A); Ax # D(A)]. We will
use this operator to characterize the rates.
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Lemma 3.5. If A # In , then B is densely defined from D(A) into D(A).
Moreover, for x # D(B) we have

(a) lim
t � 0+

1
t \

n!
tn T(t) x&x+=

1
n+1

Bx;

(b) lim
t � 0+

1
t \

(n+1)!
tn+1 |

t

0
T(u)x du&x+=

1
n+2

Bx;

(c) lim
t � 0+

1
t \

1
t |

t

0

n! T(u)x
un du&x+=

1
2(n+1)

Bx.

Proof. First to show that B is densely defined on D(A), let x # D(A).
Then (n!�tn) T(t) x # D(A) and A(n!�tn) T(t) x = (n!�tn) T(t) Ax # D(A).
Hence n! T(t)x�tn # D(B). Letting t � 0+, by Theorem 3.3 we obtain
(n!�tn) T(t)x � x as t � 0+. It follows that D(A)/D(B)/D(A). Then B is
densely defined on D(A).

To show (a), let x # D(B). Then x # D(A) and Ax # (DA) so that

"1
t \

n! T(t)x
tn &x+&

1
n+1

Bx"=" n!
tn+1 |

t

0
T(u) Ax du&

1
n+1

Ax"
�

1
tn+1 |

t

0
un "n! T(u)

un Ax&Ax" du.

From Theorem 3.3, it follows that limt � 0+ (1�t)((n!�tn) T(n)x&x)=
(1�(n+1)) Bx.

To show (b), for x # D(B) we have

"1
t {

(n+1)!
tn+1 |

t

0
T(u)x du&x=&

1
n+2

Bx"
=

(n+1)
tn+2 "|

t

0 _n! T(u)x&unx&
un+1

n+1
Bx& du"

�
(n+1)

tn+2 |
t

0 "un+1 {n! T(u)x
un+1 &

x
u

&
1

n+1
Bx=" du.

Hence (b) follows from (a).
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To show (c), for x # D(B) we have

"1
t {

1
t |

t

0

n! T(u)x
un du&x=&

Bx
2(n+1)"

�
1
t2 |

t

0
u "{n! T(u)x

un+1 &
x
u

&
1

n+1
Bx=" du.

Hence (c) also follows from (a).

Lemma 3.6. Let A # In . We define the linear operators J1, m and J2, m on
X as follows: J1, mx :=(n+1)! mn+1 �1�m

0 T(u)x du, J2, m x :=(n+2)! mn+2

�1�m
0 �u

0 T(s)x ds du. Then for i=1, 2,

(a) Ji, m is uniformly bounded;

(b) Ji, mx # D(B) for every x # D(A);

(c) limm � � Ji, m x=x for x # D(A).

Proof. (a) and (b) are obvious. It remains to show (c). For i=1 the
proof follows from Corollary 3.4(b). For i=2 and x # D(A) we have

&J2, mx&x&�(n+2) mn+2 |
1�m

0 "un+1 {(n+1)!
un+1 |

u

0
T(s)x ds&x=" du.

Then from Corollary 3.4(b) we derive the result.

If A generates an n-times integrated semigroup [T(t); t>0], we know
that A may not be densely defined, but T(t)x still belongs to D(A) for
each x # X. Hence ((n+1)!�tn+1) �t

0 T(u)x du and (n!�t) �t
0 (1�un) T(u)x du

still belong to D(A) for each x # X. If we write S1=[(n!�tn) T(t),
J1, m , 1�(n+1)B], S2=[(n+1)!�tn+1) �t

0 T(u) du, J2, m , 1�(n+2)B] and
S3=[(n!�t) �t

0 (1�un) T(u) du, J2, m , 1�2(n+1)B], then we can summarize
Theorem 3.3, Corollary 3.4, and Lemmas 3.5 and 3.6 with the following
lemma.

Lemma 3.7. If A # In , then S 1, S2, and S3 satisfy the hypotheses of
Theorem A with parameter \=1�t for 0<t�t0 and :=1 on the Banach
space D(A).

Therefore the next theorem follows immediately from (i) of Theorem A.
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Theorem 3.8. If A # In , then the following are equivalent:

(a) "n!
tn T(t)x&x"=b (t) (t � 0+);

(b) " (n+1)!
tn+1 |

t

0
T(u)x du&x"=b (t) (t � 0+);

(c) "n!
t |

t

0

T(u)x
un du&x"=b (t) (t � 0+);

(d) x # N(B)=N(A), the null space of B and A.

In the proof of Theorem 3.10 we shall need the following lemma, which
generalizes a lemma of van Neerven [13, Lemma 3.3.2] from 0 to general n.

Lemma 3.9. Suppose that A generates an n-times integrated semigroup
T( } ) such that &T(t)&�Mtn for t # (0, t0) and M�1. Then for x # D(A) we
have

K(t, x, X, D(A), & }&D(A))�K(t, x, D(A), D(B), & }&D(B))

�Mn! K(t, x, X, D(A), & }&D(A)).

Proof. The first inequality is obvious from the definition of the K-func-
tional.

To show the second inequality, fix =>0 and x # D(A) arbitrarily. By
Corollary 3.4 there exists a sufficiently large m such that &x&Ji, mx&�=.

For this m we consider the map L1
m=Ji, m : X � X, and the map

L2
m : (D(A), & }&D(A)) � (D(A), & }&D(A)), which is the restriction of L1

m to
D(A). It is obvious that L1

m and L2
m have norms �Mn! .

Choose a y1 # D(B) such that

&Ji, mx&y1&+t &y1&D(B)�K(t, Ji, mx, D(A), D(B), & }&D(B))+=.

We obtain

K(t, x, D(A), D(B), & }&D(B))�&x&y1&+t &y1&D(B)

�&x&Ji, mx&+&Ji, mx&y1&+t &y1&D(B)

�K(t, Ji, mx, D(A), D(B), & }&D(B))+2=.

Next choose y2 # D(A) such that

&x&y2&+t &y2&D(A)�K(t, x, X, D(A), & }&D(A))+
=

Mn!
.
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Since Ji, m y2 # D(B), we have

K(t, Ji, mx, D(A), D(B), & }&D(B))�&Ji, mx&Ji, m y2&+t &Ji, m y2&D(B)

=&L1
m(x& y2)&+t &L2

m( y2)&D(A)

�Mn! (&x&y2&+t &y2&D(A))

�Mn! K(t, x, X, D(A), & }&D(A))+=.

Combining this and the previous inequality we obtain

K(t, x, D(A), D(B), & }&D(B))�Mn! K(t, x, X, D(A), & }&D(A))+3=.

Since = is arbitrary, we complete the proof.

Theorem 3.10. If A # In , then the following are equivalent for 0<;�1
and x # D(A):

(a) "n!
tn T(t) x&x"=O(t ;) (t � 0+);

(b) " (n+1)!
tn+1 |

t

0
T(u) x du&x"=O(t ;) (t � 0+);

(c) "n!
t |

t

0

T(u) x
un du&x"=O(t ;) (t � 0+);

(d) K(t, x, X, D(A), & }&D(A))=O(t ;) (t � 0+).

If ;=1 the assertions (a), (b), (c), and (d) are also equivalent to

(e) x # D(B)
tX1, where X1=D(A);

(f ) x # D(B), if X is a reflexive Banach space.

Proof. We only need to show that S1, S2, and S3 in Lemma 3.7 also satisfy
(A4). Then from Theorem 2.2 and Lemma 3.9 we can derive the results.

To show S1 satisfies (A4), suppose &(n!�tn) T(t) x&x&�Ct; for some C>0
and all 0<t�1. For such t let mt=[1�t]+1. Then 1�mt<t�1 so that

" 1
n+1

BJ1, mt
x"=

1
n+1 "mn+1

t (n+1)! T \ 1
mt+ x&mn+1

t }
1

mn
t

}
(n+1)!

n!
x"

=mt "n! mn
t T \ 1

mt+ x&x"�Cmt } \ 1
mt+

;

=C \1+_1
t&+

1&;

�C \2
t+

1&;

=C21&; } t ;&1
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and

&J1, mt
x&x&="mn+1

t (n+1)! |
1�mt

0
T(u) x du&x"

�mn+1
t (n+1) |

1�mt

0
un "n! T(u) x

un &x" du

�(n+1) mn+1
t |

1�mt

0
Cun+; du

�C(n+1)
m&;

t

(n+1+;)
<C

(n+1)
n+1+;

t ;. (3)

Hence, S1 satisfies (A4) with C1=C21&; and C2=((n+1)�(n+1+;)) C.
To show that S2 satisfies (A4), suppose &((n+1)!�tn+1) �t

0 T(u) x du&x&
�Ct; for some C>0 and all 0<t�1. Let mt=[1�t]+1. Then 1�mt<t
and

1
n+2

&BJ2, mt
x&=

1
n+2 "B(n+2)! mn+2

t |
1�mt

0
|

u

0
T(s) x ds du"

=" (n+1)! mn+2
t |

1�mt

0 \T(u) x&
un

n!
x+ du"

�mt " (n+1)! mn+1
t |

1�mt

0
T(u) x du&x"

�Cmt \ 1
mt+

;

�C21&;t ;&1,

and

&J2, mt
x&x&=" (n+2)! mn+2

t |
1�mt

0
|

u

0
T(s) x ds du&x"

�(n+2) mn+2
t |

1�mt

0
un+1 " (n+1)!

un+1 |
u

0
T(s) x ds&x" du

�C
(n+2)

n+2+;
m&;

t <C
(n+2)

n+2+;
t;. (4)

Hence S2 satisfies (A4) with C1=C21&; and C2=C (n+2)�(n+2+;).
To show that S3 satisfies (A4), we use integration by parts:

1
t |

t

0

T(u) x
un du=

1
t n+1 |

t

0
T(u) x du+

n
tn+1 |

t

0
un&1 |

u

0

T(s)
sn x ds du.
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Suppose &(n!�t) �t
0 (T(u) x�un) du&x&�Ct; for some C>0 and all 0<

t�1. Let mt=[1�t]+1. Then 1�mt<t and

" 1
2(n+1)

BJ3, mt
x"=

1
2(n+1)

(n+2)! mt "mn+1
t |

1�mt

0
B |

u

0
T(s) x ds du"

=
n+2

2(n+1)
mt " (n+1)! mt |

1�mt

0

T(u) x
un du&(n+1) x

&n(n+1)(n!) mn+1
t |

1�mt

0
un&1 |

u

0

T(s)
sn x ds du+nx"

�
1
2

(n+2) mt "n! mt |
1�mt

0

T(u) x
un du&x"

+
1
2

n(n+2) mn+2
t |

1�mt

0
un "n!

u |
u

0

T(s) x
sn ds&x" du

�
1
2

C(n+2) m1&;
t +

1
2

(n+2) m1&;
t C

�C(n+2) 21&;t ;&1,

and

&J3, mt
&x&

=" (n+2)! mn+2
t |

1�mt

0
|

u

0
T(s) x ds du&x"

=" (n+1)(n+2) mn+2
t |

1�mt

0
n! un |

u

0

T(s) x
sn ds du&(n+1) x

&(n+1)(n+2) mn+2
t |

1�mt

0
n } n! |

u

0
sn&1 |

s

0

T(r) x
rn dr ds du+nx"

�(n+1)(n+2) mn+2
t |

1�mt

0
un+1 "\n!

u + |
u

0

T(s) x
sn ds&x" du

+n(n+1)(n+2) mn+2
t |

1�mt

0
|

u

0
sn "\n!

s |
s

0

T(r) x
rn dr&x+" ds du

�C
(n+1)(n+2) m&;

t

(n+2+;)
+C

n(n+1)(n+2) m&;
t

(n+1+;)(n+2+;)

<2C
(n+1)(n+2)

(n+2+;)
t;. (5)
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Hence S3 satisfies (A4) with C1=C(n+2) 21&;, and C2=
2C(n+1)(n+2)�(n+2+;).

Corollary 3.11. If X is reflexive, then every operator A in In on X is
densely defined.

Proof. Suppose that there is a non-densely defined operator A in In

on X. (f ) of Theorem 3.10 shows D(A)=D(B). In fact, for x # D(A),

"1
t \

n! T(t) x
tn &x+"�

n!
tn+1 |

t

0
&T(u) Ax& du

will be bounded as t � 0+. We obtain D(A)/D(B)
tX1=D(B)/D(A).

Since B is the part of A in D(A), this implies that the range of *&A is con-
tained in D(A){X, which means that the resolvent set \(A) of A is empty.
This is impossible even if T( } ) is not exponentially bounded [12].

The following corollary can be shown (see also [18, VII.4, Corollary 1$,
p. 218]).

Corollary 3.12. If X is reflexive, then every A # G(M, w) on X is
densely defined and hence generates a C0-semigroup.

Proof. In [11] Kellerman and Hieber showed that if A satisfies the
Hille�Yosida condition, then A generates a Lipschitz continuous one-time
integrated semigroup, i.e., A # F0/I1 . Then we derive the result
immediately from Corollary 3.11 and the Hille�Yosida theorem.

Theorem 3.13. Let A # In . Then A is unbounded if and only if for each
0<;<1 there exists x*;, 1 , x*;, 2 , and x*;, 3 such that

(i) "n!
tn T(t) x*;, 1&x*;, 1"{=O(t ;)

{b (t ;)
(t � 0+);

(ii) " (n+1)!
t n+1 |

t

0
T(u) x*;, 2 du&x*;, 2"{=O(t ;)

{b (t ;)
(t � 0+);

(iii) "n!
t |

t

0

T(u) x*;, 3

un du&x*;, 3"{=O(t ;)
{b (t ;)

(t � 0+).

Proof. By Theorem 2.4, we only need to show that S1, S2, and S3

satisfy (A5). If in (3), (4), and (5) we replace &(n! x�tn) T(t) x&x&�Ct ;,
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&((n+1)!�tn+1) �t
0 T(u) x du&x&�Ct ; and &(n!�t) �t

0 (T(u) x�un) du&x&�
Ct ; with &(n!�tn) T(t)&I& &x&�= &x&, &((n+1)!�t n+1) �t

0 T(u) du&I&
&x&�= &x& and &(n!�t) �t

0 (T(u)�un) du&I& &x&�= &x& for =>0, respec-
tively, then computations similar to those in (3), (4), and (5) show that
&J1, mx&x&�= &x&, &J2, m x&x&�= &x&, and &J3, mx&x&�(2n+1) = &x&
respectively. Hence S 1, S 2, and S 3 really satisfy (A5).

If not only A # In but also the n-times integrated semigroup T( } ) satis-
fies &T(t)&�Mtn for all t�0, then (0, �)/\(A) and &R(*; A)&=
&��

0 *ne&*tT(t) dt&�n! M�*. In this case we obtain the following theorems.

Theorem 3.14. If A generates an n-times integrated semigroup T( } ) with
&T(t)&�Mtn for t�0, then

(a) &*R(*; A) x&x& � 0 as * � � if and only if x # D(A);

(b) *(*R(*; A) x&x) � Bx as * � � for x # D(B).

Proof. (a) The necessity is easy to see from the fact that the range
of *R(*; A) is contained in D(A). Conversely, if x # D(A) then
&*R(*; A) x&x&=&R(*; A) Ax&�(n! M�*) &Ax&. Letting * � � and
using the uniform boundedness of R(*; A) we derive the sufficiency. (b) If
x # D(B), then Ax # D(A) so that *(*R(*; A) x&x)=*R(*; A) Ax con-
verges to Ax by (a).

We define J4, m from X into X by J4, mx :=mR(m; A) x for m>0, and
define S4=[*R(*; A), J4, m , B]. From Theorem 3.14 it is easy to check that
S4 satisfies the hypotheses of Theorem A on the Banach space D(A).

Theorem 3.15. If A generates a n-times integrated semigroup [T(t);
t�0] with &T(t)&�Mtn for t�0, then for 0<;�1 and x # X1=D(A) the
following conditions are equivalent:

(a) K(1�*, x, D(A), B, & }&D(B))=O(*&;) (* � �);

(b) &*R(*; A) x&x&=O(*&;) (* � �);

For the particular case ;=1, (a), (b) are also equivalent to

(c) x # D(B)
tX1;

(d) x # D(B), if X is a reflexive space.

Proof. It is sufficient to show that S 4 satisfies (A4). If &*R(*; A) x&x&
�C*&; for *�K # N, then for m=[*], &BJ4, mx&=m &mR(m; A) x&x&
�Cm1&;�C*1&; and &J4, m x&x&=&mR(m; A) x&x&�C*&;. Hence,
S4 satsify (A4) with C=C1=C2 .
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Theorem 3.16. Let A be the generator of an n-times integrated semi-
group [T(t); t�0] with &T(t)&�Mtn for t�0. Then A is unbounded if and
only if for each 0<;<1 there exists x*;, 4 # D(A) such that

&*R(*; A) x*;, 4&x*;, 4&{=O(*&;)
{b (*&;)

(* � �).

Proof. It is clear that S 4 satisfies (A4).

Remarks. (1) Because of Lemma 3.9, Theorems 3.10 and 3.15 still
hold when B is replaced by A.

(2) When n=0, Theorems 3.8 and 3.10 reduce to Butzer and Berens'
results in [3, Chapter II] and [2]; Theorem 3.13 becomes the cited result
of Butzer et al. [9, p. 441]; Theorems 3.14, 3.15, and 3.16 reduce to some
results in [7] and [5].

4. APPLICATIONS TO N-TIMES INTEGRATED
COSINE FUNCTIONS

A strongly continuous family [C(t); t�0] of bounded linear operators
on X is called a n-times integrated cosine function (n�1) if C(0)=0 and

2C(t) C(s) x=
1

(n&1)! {(&1)n |
|s&t |

0
( |s&t |&u)n&1 C(u) x du

+_|
s+t

0
&|

t

0
&|

s

0& (t+s&u)n&1 C(u) x du

+|
t

0
(s&t+u)n&1 C(u) x du+|

s

0
(t&s+u)n&1 C(u) x du=

for all x # X and s, t>0. It is called a (0-times integrated) cosine function
if

C(0)=I and 2C(t) C(s)=C(t+s)+C(t&s) for t�s�0.

C( } ) is said to be nondegenerate if C(t) x=0 for all t>0 implies x=0.
The generator A of a nondegenerate n-times integrated cosine function

C( } ) is defined as:

x # D(A) and Ax= y if and only if

C(t) x&
tn

n!
x=|

t

0
(t&u) C(u) y du for t�0.
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In the case that C( } ) is exponentially bounded, i.e., &C(t)&�Me|t, t�0,
one has

(|2, �)/\(A) and (*2&A)&1 x=|
�

0
*n&1e&*tC(t) x dt

for x # X and *>|. For properties of n-times integrated cosine functions
see [15].

We say A # In if A generates a n-times integrated cosine function C( } )
with &C(t)&=O(tn) (t � 0+).

First, we recall some properties of n-times integrated cosine functions.

Proposition 4.1. The generator A of a n-times integrated cosine function
C( } ) is a closed operator with the following properties:

(a) If x # D(A), then C(t) x # D(A) and AC(t) x=C(t) Ax for t�0;

(b) �t
0 (t&u) C(u) x du # D(A) and

A |
t

0
(t&u) C(u) x du=C(t) x&

t n

n!
x for t�0;

(c) C( } ) is uniquely determined by A;

(d) C(t) x # D(A) for each x # X and t�0.

The following theorem determines which element can be approximated
by C( } ).

Theorem 4.2. Let A # In . Then (n!�t n) C(t) x � x as t � 0+ if and only
if x # D(A).

Proof. The necessity follows from (d) of Proposition 4.1. Conversely,
since &C(t)&�Mtn as t � 0+ for some M>0, it is sufficient to show that
(n!�tn) C(t)x converges to x as t � 0+ for x # D(A). Let x # D(A). Then

"n!
tn C(t) x&x"="n!

t n |
t

0
(t&u) C(u) Ax du"

�
n!
tn |

t

0
(t&u) &C(u) Ax& du

�
n!

(n+1)(n+2)
Mt2 &Ax&

for sufficiently small t, so that letting t � 0+ we complete the proof.
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Corollary 4.3. If A # In and x # D(A), then ((n+2)!�t n+2) �t
0 (t&u)

C(u) x du � x as t � 0+.

Proof. It follows immediately from Theorem 4.2.

Let B be the part of A in D(A).

Lemma 4.4. If A # In then B is densely defined from D(A) into D(A).
Moreover, for each x # D(B) we have

(a) lim
t � 0+

1
t2 \n!

tn C(t) x&x+=
1

(n+1)(n+2)
Bx;

(b) lim
t � 0+

1
t2 \(n+2)!

tn+2 |
t

0
(t&u) C(u) x du&x+=

1
(n+3)(n+4)

Bx.

Proof. Let x # D(A). Then (n!�tn) C(t) x # D(A) and A(n!�tn) C(t) x=
(n!�tn) C(t) Ax # D(A), so that (n!�tn) C(t) x # D(B). Since, by Theorem 4.2
we obtain (n!�tn) C(t) x � x as t � 0+, it follows that D(A)/D(B)/D(A).

To show (a), let x # D(B). Then we obtain

" 1
t2 \n!

t n C(t) x&x+&
1

(n+1)(n+2)
Bx"

=" n!
t n+2 |

t

0
(t&u) C(u) Ax du&

1
(n+1)(n+2)

Ax"
=" 1

t n+2 |
t

0
|

u

0
(n! C(r) Ax&rnAx) dr du"

�
1

tn+2 |
t

0
|

u

0
rn "n!

rn C(r) Ax&Ax" dr du.

From Theorem 4.2 derive (a).
To show (b), for x # D(B) we have

" 1
t 2 \(n+2)!

t n+2 |
t

0
(t&u) C(u) x du&x+&

1
(n+3)(n+4)

Bx"
�

(n+1)(n+2)
tn+4 |

t

0
|

u

0
rn+2 " n!

rn+2 C(r) x&
x
r2&

1
(n+1)(n+2)

Bx" dr du.

Hence, (b) follows from (a).
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Lemma 4.5. Let A # In . We define J5, m , J6, m from X into X by
J5, m=(n+2)! mn+2 �1�m

0 (1�m&u) C(u) x du and J6, m=(n+4)! mn+4

�1�m
0 �u

0 �s
0 (s&r) C(r) x dr ds du. Then for i=5, 6,

(a) Ji, m us uniformly bounded;

(b) Ji, m x # D(B) for x # D(A);

(c) limm � � Ji, m x=x for x # D(A).

Proof. (a) and (b) are obvious from the assumption. It remains to show
(c). For i=5 the proof follows from Corollary 4.3. For i=6 we have

&J6, m x&x&

=(n+4)(n+3) mn+4 |
1�m

0
|

u

0
sn+2 " (n+2)!

sn+2 |
s

0
(s&r) C(r) x dr&x" ds du.

From Corollary 4.3 we derive the result.

Let A # In . If we write S5=[(n!�tn) C(t), J5, m , (1�(n+1)(n+2)) B]
and S6=[((n+2)!�t n+2) �t

0 (t&u) C(u) du, J6, m , (1�(n+3)(n+4)) B]. By
(d) of Proposition 4.1, we know that the ranges of (n!�t n) C(t), J5, m ,
(n!�tn+2) �t

0 (t&u) C(u) du, and J6, m are contained in D(A). Hence, we can
summarize Theorem 4.2, Corollary 4.3, Lemma 4.4, and Lemma 4.5 with
the following lemma.

Lemma 4.6. Let A # In . Then S 5 and S6 satisfy the hypotheses of
Theorem A with parameter \=1�t for 0<t<t0 and :=2 on the Banach
space D(A).

We derive the following theorem immediately from Theorem A.

Theorem 4.7. Let A # In . Then the following assertions are equivalent:

(a) "n!
tn C(t) x&x"=b (t 2) (t � 0+);

(b) " (n+2)!
t n+2 |

t

0
(t&u) C(u) x du&x"=b (t 2) (t � 0+);

(c) x # N(B)=N(A).

Theorem 4.8. Let A # In . The following assertions are equivalent for
0<;�2 and x # D(A):
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(a) "n!
t n C(t) x&x"=O(t ;) (t � 0+);

(b) " (n+2)!
t n+2 |

t

0
(t&u) C(u) x du&x"=O(t ;)(t � 0+);

(c) K(t2, x, X, D(A), & }&D(A))=O(t ;) (t � 0+).

If ;=2 the assertions are also equivalent to

(d) x # D(B)
tX1=D(A)

t X1, where X1=D(A);

(e) x # D(B)=D(A), if X is a reflexive Banach space.

Proof. We only need to show that S5 and S 6 satisfy (A4). Then the
assertions follow from Theorem 2.2 with an analogue of Lemma 3.9. To
show that S5 satisfies (A4), suppose that &(n!�t n) C(t) x&x&�Ct ; for
C>0 and all 0<t�1. Let mt=[1�t]+1. Then 1�mt<t, mt�2�t, and

" 1
(n+1)(n+2)

BJ5, mt
x"

=
(n+2)!

(n+1)(n+2) "Bmn+2
t |

1�mt

0 \ 1
mt

&u+ C(u) x du"
=mn+2

t "n! C \ 1
mt+ x&

x
mn

t "�m2
t "n! mn

t C \ 1
mt+ x&x"

�Cm2&;
t �C22&;t ;&2

and

&J5, mt
x&x&=" (n+2)! mn+2

t |
1�mt

0 \ 1
mt

&u+ C(u) x du&x"
=" (n+2)! mn+2

t |
1�mt

0
|

u

0
C(r) dr du&x"

�(n+1)(n+2) mn+2
t |

1�mt

0
|

u

0
rn "n!

rn C(r) x&x" dr du

�C
(n+1)(n+2)

(n+1+;)(n+2+;)
m&;

t

<C
(n+1)(n+2)

(n+1+;)(n+2+;)
t ;. (6)
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Hence, S 5 satisfies (A4) with C1=C22&; and C2=C(n+1)(n+2)�
(n+1+;)(n+2+;).

To show S6 satisfies (A4), suppose that &((n+2)!�t n+2) �t
0

(t&u) C(u) x du&x&�Ct ; for C>0 and all 0<t�1. Let mt=[1�t]+1.
Then 1�mt<t, mt�2�t, and

" 1
(n+3)(n+4)

BJ6, mt"
=

(n+4)!
(n+3)(n+4) "mn+4

t B |
1�mt

0
|

u

0
|

s

0
(s&r) C(r) x dr ds du"

�m2
t "mn+2

t (n+2)! |
1�mt

0 \ 1
mt

&u+ C(u) x du&x"
�Cm2&;

t �C22&;t ;&2,

and

&J6, mt
x&x&

="mn+4
t (n+4)! |

1�mt

0
|

u

0
|

s

0
(s&r) C(r) x dr ds du&x"

�(n+3)(n+4) mn+4
t |

1�mt

0
|

u

0
sn+2 " (n+2)!

sn+2 |
s

0
(s&r) C(r) x dr&x" ds du

�C
(n+3)(n+4)

(n+3+;)(n+4+;)
t ;.

Hence, S6 satisfy (A4) with C1=C22&; and C2=C(n+3)(n+4)�
(n+3+;)(n+4+;).

Theorem 4.9. Let A # In . Then A is unbounded if and only if for each
0<;<2 there exists x*;, 5 and x*;, 6 such that

(i) "n!
tn C(t) x*;, 5&x*;, 5"{=O(t ;)

{b (t ;)
(t � 0+);

(ii) " (n+2)!
t n+2 |

t

0
(t&u) C(u) x*;, 6 du&x*;, 6"{=O(t ;)

{b (t ;)
(t � 0+).
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Proof. By Theorem 2.4, we only need to show S 5 and S 6 satisfy
(A5). If in (6) and (7) we replace &(n! x�t n) C(t) x&x&�Ct; and
&((n+2)!�t n+2) �t

0 (t&u) C(u) x du&x&�Ct ; with &(n!�t n) C(t)&I&
&x&�= &x& and &((n+2)!�t n+2) �t

0(t&u) C(u) du&I& &x&�= &x& for
=>0, respectively, then computations similar to those in (6) and (7) show
that &J5, mx&x&�= &x& and &J6, mx&x&�= &x&, respectively. Hence S 5

and S6 really satisfy (A5).

Moreover, if not only A # In but also the n-times integrated cosine func-
tion C( } ) satisfies &C(t)&�Mtn for all t�0, then (0, �)/\(A) and
&R(*2; A)&=&��

0 *n&1e&*tC(t) dt&�n! M�*2.
If we replace * by *2 in Theorem 3.14, Theorem 3.15, and Theorem 3.16,

then the similar proofs yield the following theorems.

Theorem 4.10. If A generates a n-times integrated cosine function C( } )
with &C(t)&�Mtn for t�0, then

(a) &*2R(*2; A) x&x& � 0 as * � � if and only if x # D(A);

(b) *2(*2R(*2; A) x&x) � Bx as * � � for x # D(B).

Theorem 4.11. If A generates a n-times integrated cosine function C( } )
with &C(t)&�Mtn for t�0, then for 0<;�2 and x # X1=D(A) the
following conditions are equivalent:

(a) K(1�*2, x, D(A), B, & }&D(B)=O(*&;) (* � �);

(b) &*2R(*2; A) x&x&=O(*&;) (* � �);

For the particular case ;=2, (a), (b) are also equivalent to

(c) x # D(B)
tX1=D(A)

t X1;

(d) x # D(B)=D(A), if X is a reflexive space.

Theorem 4.12. Let A be the generator of a n-times integrated cosine
function C( } ) with &C(t)&�Mtn for t�0. Then A is unbounded if and only
if for each 0<;<2 there exists a x*;, 7 # D(A) such that

&*2R(*2; A) x*;, 7&x*;, 7& {=O(*;)
{b (*&;)

(* � �).
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